MySQL大数据分页查询性能优化
这篇教程为大家介绍MySQL大数据分页查询性能优化的方法,希望大家学习后能有所提升。
使用limit start, count分页语句
select * from product limit start, count
当起始页较小时,查询没有性能问题,我们分别看下从10, 100, 1000, 10000开始分页的执行时间(每页取20条), 如下:
select * from product limit 10, 20 0.016秒 select * from product limit 100, 20 0.016秒 select * from product limit 1000, 20 0.047秒 select * from product limit 10000, 20 0.094秒
我们已经看出随着起始记录的增加,时间也随着增大, 这说明分页语句limit跟起始页码是有很大关系的,那么我们把起始记录改为40w看下(也就是记录的一般左右)
select * from product limit 400000, 20 3.229秒
再看我们取最后一页记录的时间
select * from product limit 866613, 20 37.44秒
难怪搜索引擎抓取我们页面的时候经常会报超时,像这种分页最大的页码页显然这种时间是无法忍受的。
从中我们也能总结出两件事情:
1)limit语句的查询时间与起始记录的位置成正比
2)mysql的limit语句是很方便,但是对记录很多的表并不适合直接使用。
对limit分页问题的性能优化方法
利用表的覆盖索引来加速分页查询
我们都知道,利用了索引查询的语句中如果只包含了那个索引列(覆盖索引),那么这种情况会查询很快。
因为利用索引查找有优化算法,且数据就在查询索引上面,不用再去找相关的数据地址了,这样节省了很多时间。另外Mysql中也有相关的索引缓存,在并发高的时候利用缓存就效果更好了。
在我们的例子中,我们知道id字段是主键,自然就包含了默认的主键索引。现在让我们看看利用覆盖索引的查询效果如何:
这次我们之间查询最后一页的数据(利用覆盖索引,只包含id列),如下:
select id from product limit 866613, 20 0.2秒
相对于查询了所有列的37.44秒,提升了大概100多倍的速度
那么如果我们也要查询所有列,有两种方法,一种是id>=的形式,另一种就是利用join,看下实际情况:
SELECT * FROM product WHERE ID > =(select id from product limit 866613, 1) limit 20
查询时间为0.2秒,简直是一个质的飞跃。
另一种写法
SELECT * FROM product a JOIN (select id from product limit 866613, 20) b ON a.ID = b.id
查询时间也很短!
其实两者用的都是一个原理嘛,所以效果也差不多
Mysql的分页查询十分简单,但是当数据量大的时候一般的分页就吃不消了。
传统分页查询:
SELECT c1,c2,cn… FROM table LIMIT n,m
MySQL的limit工作原理就是先读取前面n条记录,然后抛弃前n条,读后面m条想要的,所以n越大,偏移量越大,性能就越差。
推荐分页查询方法
1、尽量给出查询的大致范围
SELECT c1,c2,cn... FROM table WHERE id>=20000 LIMIT 10;
2、子查询法
SELECT c1,c2,cn... FROM table WHERE id>=(SELECT id FROM table LIMIT 20000,1)LIMIT 10;
3、高性能MySQL一书中提到的只读索引方法
优化前SQL:
SELECT c1,c2,cn... FROM member ORDER BY last_active LIMIT 50,5
优化后SQL:
SELECT c1, c2, cn .. . FROM member INNER JOIN (SELECT member_id FROM member ORDER BY last_active LIMIT 50, 5) USING (member_id)
分别在于,优化前的SQL需要更多I/O浪费,因为先读索引,再读数据,然后抛弃无需的行。而优化后的SQL(子查询那条)只读索引(Cover index)就可以了,然后通过member_id读取需要的列。
4、第一步用用程序读取出ID,然后再用IN方法读取所需记录
程序读ID:
SELECT id FROM table LIMIT 20000, 10; SELECT c1, c2, cn .. . FROM table WHERE id IN (id1, id2, idn.. .)
本文网址:https://www.zztuku.com/detail-11437.html
站长图库 - MySQL大数据分页查询性能优化
申明:如有侵犯,请 联系我们 删除。
您还没有登录,请 登录 后发表评论!
提示:请勿发布广告垃圾评论,否则封号处理!!